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Abstract 

A neural network circuit structure was previously proposed for making 
an isolated electron trigger for the CDF plug calorimeter. Here we discuss a 
study of the isolation performance of the Intel ETANN (Electrically Trainable 
Analog Neural Network) chip. We used the PC based ETANN development 
system and Monte Carlo generated shower patterns to test the chip. A C++ 
application program was developed that runs within the development system 
but extends chip controland testing capabilities beyond the standard routines. 
With this program several configurations of the chip parameters were tested 
and the results are discussed here. 

1. Introduction 

A neural network circuit structure was proposed for the CDF plug calorimeter 
isolation trigger (1,2]. A Level-2 isolation cut would allow a lowering of the Level-2 
trigger threshold and so increase the efficiency and acceptance for W’s, top, Drell- 
Yan and direct photons. The circuit would be presented with 50 tower energies 
centered on the seed tower found by the cluster finder. The circuit examines the 
ratio of the energies near and including the seed tower to the surrounding tower 
energies to determine if the seed tower cluster is isolated. 

Figure 1 shows four templates where the grid represents a 5x5 array of EM 
towers around the seed tower. Available are also 25 hadronic towers centered on 
the seed tower position. The hatched regions represent the four towers around and 
including the central seed tower. The energy sum of these four towers is called here 
the inner energy (Ei,,,). The four templates show the four possible patterns of the 
inner four towers with the seed tower at the center of the array. The energy sum 
of the other 21 EM towers plus the 25 hadronic towers is called the outer energy 
(E,,,). We define the isolation variable fi”’ as: 

ji#d _ per 

**ner 

The shower is considered isolated if pd is smaller than some cut jzf. The ratio 
could be calculated explicitly with a digital circuit but would be slower than a simple 

‘Current address: 1261 Form Ln. Aurora, Jl. 60506 

1 



analog circuit. The analog circuit just compares the difference of two weighted values 
and fires if this difference is positive or negative: 

~~J%uhev - EM, > 0 a isolated, 

where Einru, is weighted by f,” and E,, is weighted by 1.0. 
This computation is very similar to what a neural circuit does. An electronic 

neuron is basically a threshold amplifier which fires if the total input signal is greater 
than zero. Signals sent to the neuron inputs are multiplied by a weight in the synapse 
and a sum of the weighted signals is presented to the amplifier. Here the inputs would 
be voltages proportional to the tower energies and the weights would be f.$’ for each 
of the four inner towers and -1.0 for the outer 46 towers: 

N i-~f~~~~-l.o~v~,. 
i-1 

The threshold characteristic of the neuron response is typically (see fig. 3): 

N 
A 

atput = 1.0 + exp(-GNieN)’ 

where constant A is the maximum output and constant G is a gain factor. If G is 
very large the neuron acts aa a binary function, fully turning on whenever the total 
input slightly exceeds zero. Four such neuron circuits could provide the isolation 
trigger bits for the four templates of figure 1. 

A discrete component circuit could be built to carry out this network (see, 
for example, ref. [3]). No training is involved so the weighting can be done with 
simple resistors. However, the Intel chip described in the next section would aUow 
greater flexibility, e.g. one could easily experiment with different isolation cuts. Also, 
a B trigger system is already in place that uses the Intel chip [4,5,6]. (There is also 
a central calorimeter isolation trigger similar to the plug isolation trigger but it 
simply cuts on the sum of the outer tower energies rather than on the ratio of outer 
to inner[2].) The plug isolation trigger is a straightforward duplication of this system 
and allows for hardware and software compatibility. 

2. Intel ETANN Chip 

The Intel Electrically Trainable Analog Neural Network (ETANN) has been 
described previously [7,8]. The chip has 64 neurons or threshold amplifiers with 
sigmoidal response. Effectively, however, there are 128 neurons since the same 64 
neurons are used for both the middle and output layers. A signal (analog voltage 0.0~ 
to 3.5~) entering one of the 64 inputs is presented to a synapse. The synapse design 
is similar to a Gilbert multiplier circuit which produces a differential output current 
proportional to the multiplication of two differential voltages. Here the difference in 
threshold voltages (Vt) of two floating gates provides the weight value: 

I output z (&.d - &Ii) X (vtl - Vb). (3) 
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Figure 2 shows the current outputs for various Vtdif values versus the input voltage 
for V,./i = 1.47~. Note that the outputs are not perfectly linear, especially for the low 
weights and for high Vin values. The weights values are limited to approximately 
f2.5 and have about 6 bit precision. Charge can be made to tunnel onto the floating 
gates with large voltage pulses. The synapses are non-volatile and can remain stable 
for several years. 

There are 64 inputs plus 16 internal constant (or bias) voltages connected to 
each neuron through 80 synapses. So the neurons see current sums proportional to 
the dot product of 80 input-synapse products. There are two sets of 80x64=5120 
synapses. One set is for the first layer and the other for second layer processing where 
the first layer outputs are clocked back through these synapses and the neurons 
reused for the second layer outputs. 

The neuron response, for a standard input reference voltage (VLti) of 1.4~ and 
standard output reference voltage (V,.t.) of 1.4v, is approximated by the sigmoidal 
function: 

f(rj) = 2’55u +O.lO, 
1 +eXpZj (4) 

where 2j is 

Zj = G (5) 

Here I’, is the input voltage. The wj~ is the weight for the connection between 
receiving unit j and sending unit k. Of the 16 internal biases (Vb u 4.Ov), seven 
are available for the user (the other 9 are reserved for the initialization of the chip 
by the development system described below.) The gain G can be varied with an 
external control voltage (Vpdn ) with a maximum of about 1.3. For Vga;,, mode the 
output ranges from about 0.1 to a little less than 2 x V&. A special binary mode 
(H,,i, ) with fast turn on from 0.0~ to 5.0~ is also available by setting a control 
input on. Figure 3 shows how the Vga;n values affect the sigmoid and figure 4 shows 
comparison of V&in and Ifcoin modes. 

After signals are presented at the inputs, the first layer neuron outputs will 
reach final levels within about 3~5 for VOo;,, mode and 0.8~s for Hgoin . As mentioned 
above, a second layer mode is also available but here we only need to use the one 
layer mode. 

A pc-based development system for the ETANN is available[9]. The Intel 
iNNT.9 system allows one to do such things as initialize the chip, read weights from 
or write weights to the chip, emulate the chip [lo], and do chip-in-the-loop training 
(CIL). However, the standard routines may not be sufficient so also provided is a 
library of subroutines one may call with one’s own program. Here we used the iNNTS 
system primarily for initializing the chip. It automatically sets all weights to 0.0 and 
uses the internal biases (7-16) to set each neuron to half maximum activation for 
zero input. All further testing was done with a custom program discussed in the 
appendix. 
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5. Test Procedure 

To test the chip’s ability to perform the isolation trigger we used the following 
procedure (with occasional variations as discussed later): 

1. The chip was initialized with the control voltages (Vein or Hei, mode, V&i 
and V,.,. ) for a particular test configuration. 

2. The first four neurons were chosen to represent the four templates (fig. 1). The 
synapses connecting a neuron to the first 50 inputs were loaded with: j;* for 
each of the synapses connected to the inner four towers and -1.0 for the other 
46 synapses. (These weights can also be changed by some constant factor as 
long as the ratio of the inner and outer weights remains f;“.) 

3. We want the chip to perform the sum of equation 1 and to use that sum for 
its output function in equation 2. However, in equations 3 and 4, we see that 
Vr.ti is subtracted from the outputs. So the sum is actually: 

Input = f," $(YL - Lfi) - 1.0 F(V& - V,.fi) + BiOA (6) 
i=l i=l 

or 

Ninplc = g VA, + (46 - 4fz)Kefi + Bias (7) 

It is therefore necessary to use the Bias (see second term in equation 5) to 
eliminate the term multiplied by V..fi . Note that for the bias we can either 
use 7 internal bias voltages or use the spare 14 inputs (51-64) by placing a 
fixed voltage on them. 

4. f;” was found in reference [l] to be optimum at 0.16 so this was the target 
cut value. 

5. To generate a shower pattern, first an Ei~- and E,,, were chosen. A con- 
version of Iv=lOGeV was used. 

6. For a chosen template, the E;,,, of the four inner towers were assigned random 
fractions of this value with the seed tower restricted to having at least 6GeV. 
The 46 outer towers were assigned random fractions of the E,,,,,, with the 
restriction that no one tower have more than 25% of E,,, . 

7. The pattern of voltages for a given event were presented to the chip and the 
output for each template neuron recorded and compared to the f”d of that 
template. 

8. Scanning pd from 0.05 to 0.30 for the chosen template, the value of pd 
where the transition from above a threshold to below it was recorded. 
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9. E;,, was increased from 1OGeV to 28GeV in one step increments and the 
transition value was found at each step by the scanning of f’“’ The average 
of these transition values was calculated. The regular Level-2 electron trigger 
kicks in around total EM energy of 20GeV. So the most important range 
for the isolation trigger is roughly 1OGeV < Ei,,- < 20GeV (a threshold 
cut determines the lower limit). We’ll present results for that range and for 
10GeV < Ei- < 28GeV. 

10. The average transition from high to low should occur at fz but because of the 
lack of precision in the weights and to other imperfections, the transition would 
usually occur away from this value. So the weights connecting the neuron to 
the bias voltages were modified until the average transition occurred at f,” . 

4. Results 

4.1. Stability of Isolation Cut 

The first tests used the standard reference voltage of V,=ri =1.4. The lower 7 
internal bias voltages (- 4.0~) were used to subtract out the V&i term (see above). 
However, with VLfi = 1.4 there was not enough bias to subtract out this term if 

f;” of 0.16 was used. So a smaller value of 0.10 was used for the inner tower weights 
and 0.625 was used for the outer tower weights (the ratio is still 0.16). The upper 
inputs of 51-64 were set to 0.0~. 

In this configuration it was found that the average transition could be readily 
set to 0.16 f 0.04. However, the transition would eventually begin to move away 
from this value, sometimes within minutes, by several percentage points. The chip 
was quite hot to the touch and the transition points seem to vary if the chip cooling 
was altered. One possibility was that the internal bias voltages were sensitive to the 
heat. So we set the weights to these internal biases to zero. For substitute biases we 
set the upper inputs (51-64) to 3.0~ and adjusted the weights to these inputs to vary 
the transition point. This seemed to help somewhat but there were still significant 
variations of the average transition point with time. 

Equations 3 and 4 show that V,.fi is subtracted from each input. In a given 
event most of the outer inputs are small or zero values. This means that the synapses 
are producing a current proportional to -1.4 x -1.0 (eq. 3 and also see fig.1). For 46 
inputs this produces a sizable current and therefore substantial heat. To reduce the 
current V&i was reduced to 0.2~. (It wasn’t reduced all the way to zero because of 
extreme non-linear behavior there.) This reduces the total current by about factor 
of 49. In this mode the chip became much cooler and the variation in time was 
reduced substantially. There is still some variation when the chip is first powered up 
but it goes to it’s nominal value within a minute or two, We still are using the upper 
inputs as biases although perhaps the reduced heat would now make the internal 
biases more reliable. 
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4.9. Ifgain Mode 

We first discuss results with the chip in ~*.;n mode. With the smaller V,.fi 
(=9.2v), the constant V,.t; term in equation 7 was much smaller. With the available 
bias it was possible to have bigger weights and still eliminate this term. So instead 
of 0.16 and -1.0, we used 0.32 and -: 9 for the inner and outer weights, respectively. 
This gave more significant products yrhen multiplying small input signals. 

Figure 5a-d shows the output voltage of the 4 template neurons in EIgoin mode 
88 function of pd for Ei- from 1OGeV to 20GeV. As Ei- is increased in IGeV 
steps, f”d is scanned from 0.5 to 0.30. So figure 5 shows the results of 11 such 
scans for each template. Figure 6 shows a simulated comparator output where the 
output is 1.0 if the voltage was greater than 1.4~ and as 0.0 if the output is less than 
1.4~. A comparator is available on the trigger board to make this threshold cut. The 
transitions were set to occur at 0.16. Figures 7 and 8 show similar plots for IOGeV 
to 28GeV range. 

As pd is increased, sometimes the output goes low, say at f”d = 0.15, and 
then comes back up at, say, 0.17, and falls again at perhaps 0.18. This bouncing 
usually occurs no more than once for a given Ei,- scan, and around 4-5 times for 
the 11 steps between lOGeV-20GeV. In figure 6 and 8 this produces the overlap 
region where the outputs are sometimes high and sometimes low for same pd . 
Note that the input patterns (i.e. the amount of energy in each of the 50 towers) are 
randomized for every event. So even if two events have the same Ei,- and E,, 
the neuron response can be different since the patterns can be very different. If we 
calculate the average transition using all transition points, including these extra 
bounce points, the average transition has an rms of about 0.02. If we just use the 
position of the pd where the first transitions occurred, the rms is about 0.01. 

Figure 9 shows the pd at the first transition as function of Ei,,, up to 28Gev. 
Figure 10 shows distribution of pd at first first transition and figure 11 shows pd 
for all transitions. The transitions widths are roughly within the 0.02 range. 

4.3. Vgain Mode 

The Hooin mode would seem the natural mode to implement this network since 
a sharp transition at threshold is desired. However, the lip.in mode output behavior 
seemed somewhat more sensitive to variations in temperature and time than the 
VP-i,, mode. Since a comparator was available on the trigger board, using Vgoin 
output was feasible since the comparator would produce a binary output according 
to a threshold setting. 

As seen in figure 3 and 4, the slope of the V0.i” output is considerably smaller 
than for EL+,, . However, by using l&in = 5.Ov, weights of 0.32 and -2.00, and I’& 
= 1.7v, we obtained a suitable output slope. The isolation transition point used a 
threshold of 1.55~ as the piace where the transition from on to off occurred. 

Figure 12 shows the output voltage of the 4 template neurons in Vg0;,, mode for 
1OGeV < E;,,, < 20GeV as function of pd Figure 13 shows the the simulated 
comparator output with out = 1.0 if th e voltage is above 1.55~ and out = 0.0 if the 
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voltage is below 1.55~. Figures 14-15 show similar plots for the 1OGeV < Ei,,, < 
28GeV range. 

Figure 16 shows f”“’ at first transition versus Ei, . Figure 17 shows distri- 
bution of p& at first transition and figure 18 shows f”d for all transitions. The 
rms of the first transitions is about 0.01 and rms of all transitions is about 0.015. 

5. Discussion 

The test here shows that the ETANN can perform an isolation cut at the 0.02 
precision level. The chip is primarily aimed for applications where the network is 
trained and so the various non-llnearities, limited precision weights, etc. can be com- 
pensated for in the training process. The isolation task here tends to emphasize the 
weaknesses of the chip and not its strengths. However, for the plug isolation trigger 
the input signals are somewhat coarse so the precision of the chip is sufficient. The 
strategy recommended here would be to set the point of the average first transition 
at 0.16. This would avoid cutting the isolated showers that one desires. If the output 
bounces back up at higher pd values, then more events are accepted but, assuming 
the rate is not increased dramatically, these events can be cut by the Level-3 electron 
trigger. 

Tests of time variation of the average transitions indicate that the V,, mode 
is more stable than the Hr.;, mode. A chip in Vg.in mode had average transitions 
remain within 0.01 of their values over several weeks (most of the time the chip was 
disconnected from power as well), whereas a Hp.,;* chip showed variations at the 
0.02-0.03 level. 

Currently a chip in Hgain mode is installed in a Michigan neural network trig- 
ger board[4]. Test patterns sent to the chip seem to indicate similar performance 
there as in the trainer. A chip set in V&n mode is also available and will be tried 
later. We hope to see plug isolated events triggered by the chip in actual data in the 
near future. 
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Appendix: A C++ Neural Network Test Program 
The iNNTS development system comes with a package of programs that ini- 

tialize and test the chip and include two neural network emulators: Dynamind [lo] 
and Brainmaker (11). In the past we have primarily used the Dynamind emulator 
for chip emulation and chip-in-the-loop training. Dynamind seems to have been 
written specifically for the ETANN and has worked well for training the chip. For 
the isolation trigger studies here, however, there were several problems with using 
Dynamind. For example, the inputs and outputs are defined on a scale of 0.0~ to 
2 x V&;. As noted in the text, we found that having a small V,,,; improved the 
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stability of the chip. We still wanted to have inputs in the 0.0~ to 3.5~ range, but 
in Dynamlnd we would be limited to 0.0~ to 0.4~ if V&i = 0.2~. 

For this reason and also for increased flexibility, we decided to develop custom 
programs that use the library of routines supplied with the software package. This 
package is written in Microsoft C. The include file t&h is available along with the 
library file tsiI.lib. The C compiler used here was Turbo CA+ and there are some 
compatibility problems with Microsoft C (same problem also with Turbo C). So to 
properly link to t&lib, one must obtain a special subroutine (search.ob~‘) from Intel 
to include in the linking. 

To obtain the power and flexibility of object oriented programming we chose 
to use C++. To link properly a C include file to C++, the function definitions must 
be declared a extern “C” routines. For example: 

StatusT initialize-etann(struct InitStuct *i&-data); 

becomes 

extem “C” { extem StatusT initialize-etann(struct InitStuct *i&-data);} 

where StattuT declares a binary type variable. 
The tsil routines are described in the iNNTS manual. Subroutines for such 

things as loading weights, reading weights, setting trainer control voltages, etc. are 
provided. An ETANN object was created with many of these subroutines called 
by member functions of the object. For example, when the object is created the 
constructor function asks for values of chip parameter such as V& and does other 
setup tasks. 

To do the isolation net tests here, several other objects were developed. For 
example a PLUG object contains the tower energies and distributions. The PLUG 
towers can be sent to a NET object which contains the network description. By 
overloading operators one can do things like 

PLUG >= NET 

to send the PLUG information to the NET object. Similarly, the NET information 
is sent to the ETANN via 

NET >= ETANN 

With the ETANN object we could easily read and alter a given weight. This 
is not available with the other iNNTS programs. In practice we would scan through 
the energies as discussed in the text and find the average pd at transition from 
high to low for a give template. If this was not at the target value, we would read 
a bias weight and alter it by some amount. Then we would redo the scan and see 
if the average f i’d had gotten closer to the desired value. This tweaking of the bias 
and scanning of the transitions continued until the target value was reached. This 
process was all done interactively within one program. 
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The +5.OOv supply voltage (Vcc) to the chip from the trainer can vary by as 
much as 50-60mV from 5.00~. This is not a problem as long as the chip remains 
in the trainer. However, if the chip is to be taken from the trainer and used in an 
embedded system, it is very important that Vcc be the same. The chip performance 
can change dramatically with even a 50mV change in Vcc. Since the isolation chip 
is to be used in a fastbus board with exactly 5.00~ input, it was necessary to make 
the trainer voltage also exactly 5.00~. Information on an undocumented iNNTS 
subroutine was obtained from Intel and this was made into an ETANN member 
function. With wires attached to a Vcc pin and a ground pin while the chip was 
connected to the trainer, we could use this routine to adjust Vcc till it was 5.00~. 

The ETANN and other C++ objects mentioned here, although sufficient for 
the isolation analysis, are still at a early stage of development. We hope to develop 
the routines into an ETANN class library that would be useful for other ETANN 
projects (e.g. back-propagation training). The lowest level objects also should be 
easily adaptable to other neural network chips. The OOP structure of C++ allows 
one to easily build on previous work by using the inheritance feature to incorporate 
old objects into new ones. For further information on these routines contact C. S. 
Lindsey. 
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Figure 1: Isolation net templates [I]. 
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Figure 2: Synapse output current versus input voltage for various weights Vtdif [8]. 



Figure 3: Neuron output distributions versus totd input current for V&OUS V&ES of I&fi [8]. 
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Figure 4: Neuron output versus input current for V& mode with V& = 5.0~ and for Hgoin 

mode (8]. 
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Figure 5: For the chip in H,+,, mode, neuron voltage output versus f”” for 1OGeV < I?,,,,, < 
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Figure 8: For the chip in ITgain mode, neuron output (0 or 1 using threshold cut of 1.4~ as in 
fig. 7 ) versus I”“’ for lOGel; < E;,, < 28GeV. (a)-(d) templates i-4. 
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Figure 9: For the chip in Hg,,in mode, fiOO‘ at first transition high to low verus I?;,,. (a)-(d) 
templates 1-4. 
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Figure 10: For the chip in Hgain mode, I”“’ at first transition high to low for 10GeV < E;,,., < 
28GeV. (a)-(d) templates 1-i. 
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Figure 11: For the chip in Hg,,in mode, firol at all transitions high to low for lOGeL’ < I&,,., < 
28GeV. (a)-(d) templates l-4. 
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Figure 12: For the chip in V&in mode, neuron voltage output versus fi”‘ for 10GeV < E+,,, < 
20GeV. (a)-(d) templates 1-4. Line shows threshold cut at 1.55~. 
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Figure 13: For the chip in V&i,, mode, neuron output (0 or 1 using threshold cut of 1.55~ as in 
fig. 12 ) versus p’ for 1OGeV < Ei,,- < 20GeV. (a)-(d) templates 1-4. 
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Figure 14: For the chip in ‘Cl& mode, neuron voltage output versus figoi for 1OGeV < E;,,., < 
28GeV. (a)-(d) tempiates 1-4. Line shows threshold cut at 1.55~. 
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Figure 15: For the chip in V&;,, mode. neuron output (0 or 1 using threshold cut of 1.55~ as in 
fig. 14 ) versus fiBoi for 10GeV < E,,,,,, < 28GeV. (a)-(d) templates 1-1. 
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Figure 16: For the chip in Vp.;,, mode, fira‘ at first transition high to low verus IL.,. (a)-(d) 
templates l-4. 
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Figure 17: For the chip in V&;,, mode, y’ at first transition high to low for 10GeV < I?,,,,, < 
28GeV. (a)-(d) templates l-4. 
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Figure 18: For the chip in V,,;, mode, jiaO’ at all transitions high to low for 10GeV < E;,,, < 
28GeV. (a)-(d) tempiates 1-A. 


